There is, though, a catch-22 in interpreting these results. If all the cells respond the same way, then you have confirmed that your population is unitary, but the single cell nature of your recording yields no new information. On the other hand, if the cells you record from respond to a bunch of different things, they're not really a unified population, but rather a conglomeration of different neuron types. To illustrate these issue, I'd like to briefly show figures from two papers.
All together now
If you stimulate AgRP neurons in the hypothalamus, you can get a mouse to shove chow in its face. What remained unclear until this year, however, was how these neurons fire naturally. Some evidence gave hints; cFos staining had shown that these neurons are more active in hungry mice; in vitro recordings have shown that in hungry mice, these neurons receive more excitatory input, a cool form of short-term plasticity (Yang, ..., Sternson, 2011); and imaging has shown that these neurons undergo rapid spinogenesis and pruning when mice are hungry and fed (Liu, ..., Lowell, 2012). In general, the working hypothesis was that AgRP neurons fire at a high rate when a mouse is hungry, which causes a mouse to seek food, or eat; when a mouse is sated, AgRP neurons turn off.
Given that basic model, there were many unanswered questions. How fast do AgRP neurons turn on and off? Do they turn off when you start eating, or do they take time to integrate enteric (gut) signals? What rate do they fire at? To answer these types of questions, we needed the development of easier in-vivo recording techniques for deep brain areas.
Earlier this year, the Knight lab at UCSF answered many of these questions by doing fibre photometry of AgRP and POMC neurons expressing GCaMP6s. (Chen, ..., Knight, 2015). They found that the activity of AgRP neurons in hungry mice actually decreases before mice start eating, when the mice first sense food (see below). In addition to receiving gut information, AgRP neurons receive fast input from brain areas that can identify food, which was unexpected. These results also question whether AgRP neurons are "hunger" neurons, or something slightly different like food seeking neurons.
Fortuitously, the Sternson lab did just that, using an in-vivo endomicroscope to image individual AgRP neurons expressing GCaMP6 (Betley, ..., Sternson, 2015). They found that all AgRP neurons act pretty much the same. They quantified fluorescence changes from AgRP neurons when a mouse was well fed, or food deprived; 54/61 neurons had brighter fluorescence when the mouse was food deprived (panel e, below). Like Chen et. al., they found that AgRP neurons decreased their activity before the mice started to eat (panel f); 96% of them to be precise (panel i).
How am I different?
In contrast to all the neurons acting the same, there is the possibility that all the neurons act differently. To illustrate this, I've selected a recent paper from the Stuber lab at UNC which investigated GABA neurons in the lateral hypothalamus (LH; Jennings, ..., Stuber, 2015). They used an in-vivo endoscope to image Vgat-Cre neurons expressing GCaMP6m. They had previously shown that these neurons are involved in consummatory behaviour.
During imaging, they ran the mice through two sets of behaviours. First, they let the mice eat in a cage with food located in two corners. If neurons had increased activity in the food zone, they were categorized as food zone excited (FZe); if they decreased activity, they were food zone inhibited (FZi). Around 10-15% of neurons were FZi or FZe (panel F, below). In a second set of behaviours, the mice were taught a progressive ratio task (PR3) where they could nose poke for food. Here they found some neurons responded during the nose poke (23%), while others responded during the consumption of food (10%; panel H, below). Finally, one might imagine that FZe or FZi neurons were correlated with nose poke or consumption activity, so they investigated the overlap between these populations. 28/40 FZe neurons responded during the PR3 task, split between consumption and nose poke; 12/40 FZi neurons responded during the PR3 task, again split between consumption and nose poke (panel J).
Our data suggest that separate subsets of appetitive-coding and consumption-coding ensembles exist within the LH GABAergic network. Thus, the LH GABAergic network can be viewed as a mosaic of functionally and computationally distinct cell types, requiring further definition. Nevertheless, these important computational differences among individual LH GABAergic neurons would have gone unnoticed if only bulk neuromodulatory approaches were employed, further underscoring the necessity of identifying the natural activity dynamics within a network to better understand the precise neural underpinnings of complex behavioral states.
The pessimist in me is frustrated by these results. Now we have to track down the neuronal subtypes, and repeat the experiments for each subtype (and lord knows I hate repeating experiments)! On the positive side, this could be a building block for future experiments. There is now a lower bound for the number of cell types to look for (at least five). I think single cell sequencing is the only way to identify these cell types reliably, and without recording.
Anyway, that is a long way of getting at what I see as the catch-22 of single cell identified neuronal recording: if they're all the same, you didn't need single cell resolution; and if they're all different, you don't have an strongly identified cell type.
References
Betley, J., Xu, S., Cao, Z., Gong, R., Magnus, C., Yu, Y., & Sternson, S. (2015). Neurons for hunger and thirst transmit a negative-valence teaching signal Nature, 521 (7551), 180-185 DOI: 10.1038/nature14416
Chen Y, Lin YC, Kuo TW, & Knight ZA (2015). Sensory detection of food rapidly modulates arcuate feeding circuits. Cell, 160 (5), 829-41 PMID: 25703096
Jennings, J., Ung, R., Resendez, S., Stamatakis, A., Taylor, J., Huang, J., Veleta, K., Kantak, P., Aita, M., Shilling-Scrivo, K., Ramakrishnan, C., Deisseroth, K., Otte, S., & Stuber, G. (2015). Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors Cell, 160 (3), 516-527 DOI: 10.1016/j.cell.2014.12.026
Liu, T., Kong, D., Shah, B., Ye, C., Koda, S., Saunders, A., Ding, J., Yang, Z., Sabatini, B., & Lowell, B. (2012). Fasting Activation of AgRP Neurons Requires NMDA Receptors and Involves Spinogenesis and Increased Excitatory Tone Neuron, 73 (3), 511-522 DOI: 10.1016/j.neuron.2011.11.027
Yang, Y., Atasoy, D., Su, H., & Sternson, S. (2011). Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop Cell, 146 (6), 992-1003 DOI: 10.1016/j.cell.2011.07.039
References
Betley, J., Xu, S., Cao, Z., Gong, R., Magnus, C., Yu, Y., & Sternson, S. (2015). Neurons for hunger and thirst transmit a negative-valence teaching signal Nature, 521 (7551), 180-185 DOI: 10.1038/nature14416
Chen Y, Lin YC, Kuo TW, & Knight ZA (2015). Sensory detection of food rapidly modulates arcuate feeding circuits. Cell, 160 (5), 829-41 PMID: 25703096
Jennings, J., Ung, R., Resendez, S., Stamatakis, A., Taylor, J., Huang, J., Veleta, K., Kantak, P., Aita, M., Shilling-Scrivo, K., Ramakrishnan, C., Deisseroth, K., Otte, S., & Stuber, G. (2015). Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors Cell, 160 (3), 516-527 DOI: 10.1016/j.cell.2014.12.026
Liu, T., Kong, D., Shah, B., Ye, C., Koda, S., Saunders, A., Ding, J., Yang, Z., Sabatini, B., & Lowell, B. (2012). Fasting Activation of AgRP Neurons Requires NMDA Receptors and Involves Spinogenesis and Increased Excitatory Tone Neuron, 73 (3), 511-522 DOI: 10.1016/j.neuron.2011.11.027